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In many turtes, the temperature experienced during the middle of egg incubation determines
the sex of the offspring. The implication of steroid sex hormones as the proximate trigger for sex
determination opens the possibility that endocrine-disrupting contamn may also influence
the outcome ofsexa differentiation. In this study we investigate the potential effects ofDDE (a
common DDT metabolite) on sexual differentiation of Chelonia mydas (green sea turtle). Four
clutches of eggs collected from Heron Island, Queensland, Australia, were treated with DDE at
the beginning of the thermosensitive period for sexual determination. An incubation tempera-
ture of 28°C or less produces male hatchlings in this species, whereas 30`C or more produces
female hatchlings. Dosed eg were consequently incubated at two temperatures (27.60C and
30.4°C) on the upper and lower boundaries of the sex determination threshold for this species.
IDDE, ranging from 3.3 to 66.5 pg, was dissolved in 5, 10, and 25 pl ethanol and applied to
eggshells above the embryo. Less than 2.5 ng/g DDE was present in eggs prior to dosing.
Approximately 34% of the applied DDE was absorbed in the eggs, but only approximately 8%
of applied DDE was found in embryos. Thus, treated eggs, corrected for background DDE, had
up to 543 ng/g DDE. The sex ratio at these doses did not differ from what would be expected on
consideration of temperature alone. Incubation time, hatching success, incidence of body defor-
mities, hatching sir, and weight were also within the limits of healthy developed hatchlings.
This indicates that the eggs of C mydas in the wild with concentrations ofDDE less than 543
ng/g should produce hatchlings with relatively high hatching success, survival rate, and normally
diferentiated gonads. Key wordk Chelona, DDT, endocrine-disrupting contaminant, tempera-
ture-dependent sex determination. Environ Health Perspeet 106:185-188 (1998). [Online 26
February 1998]
http:f/ehpnetl.niehs.nih.gov/docs/1998/1 06p185-188podrekalabsa.html

In many turtles, the temperature experi-
enced during the middle third of incuba-
tion determines the sex of the offspring
(1,2). Recent evidence indicates that steroid
sex hormones are the proximate trigger for
sex determination (3-5), though the mech-
anism by which temperature influences hor-
monal balance or hormone receptors in the
developing embryo is not yet fully under-
stood. Offspring sex can be influenced in
the laboratory by administration of com-
pounds such as tamoxifen (6), 17J-estradiol
(7-9), estradiol benzoate (4), and testos-
terone propionate (4), which opens the pos-
sibility that endocrine-disrupting contami-
nants will influence hatchling sex ratios in
the wild. DDT, its metabolic product DDE
(10), and polychlorinated biphenyl com-
pounds (PCBs) (11) are likely candidates
(12) and should be of special concern, as
they are the most common contaminants
accumulated in animal tissues (13-16).

Although banned in some countries,
DDT is widely used in developing coun-
tries (17,18), and this insecticide and its
derivatives are well established as environ-
mental contaminants (19,20). DDT accu-
mulates in lipid tissues and is progressively
metabolized to DDE (21,22), which is
more persistent than its parent compound.

An estimated rate of over 12,000 tons
of DDE per year ended up in the oceans in
the 1970s (23,24). While some is adsorbed
to sediments of the ocean floor (25), most
of it enters the marine food chain (23,24).
Once in an organism, DDE can affect the
endocrine system, resulting in effects on
growth, development, and reproduction
(10,26,2/). The embryo stage appears to
be the developmental stage most vulnera-
ble to the effects of endocrine-disrupting
contaminants (12). Abnormal develop-
ment, embryonic deformities, increased
mortality, and lower hatching success have
been shown to occur because of DDE con-
tamination in a range of organisms includ-
ing reptiles (28,29).

In sea turtles, DDE accumulates in adi-
pose tissue (15) and is eventually passed to
eggs (30,31). DDE concentrations occur-
ring in turtle and other reptile eggs in their
natural environment have been measured
in many studies (Table 1), but the effects
of this pollutant on embryos are men-
tioned in only a few (28,29,32,33). In this
paper we examine the effects of DDE cont-
amination on offspring sex ratios and
embryonic development in the marine tur-
tle Chelonia mydas. Background DDE lev-
els in eggs collected in the wild were also

measured and compared to published DDE
values for reptile eggs from other studies,
and the effectiveness of topical administra-
tion ofDDE in solution was assessed.

Materials and Methods
Source of eggs. Freshly laid eggs from the
clutches of four female Chelonia mydas
(Table 2) were collected from Heron Island,
Queensland, Australia, on 12 January 1995,
chilled to 120C, and transported by air to
the University of Canberra, Australian
Capital Territory. All eggs were assigned to
experimental incubators within 72 hr.
Initially, all eggs were placed in incubators
set at 27.5°C to await an assessment of their
viability. They were placed in 5-liter circu-
lar plastic food containers and covered by
moist vermiculite (three parts vermiculite to
four parts water by weight). After 15 days
of incubation, eggs were checked for shell
whitening (34), which indicates that devel-
opment had commenced. Extreme care was
exercised when inspecting the eggs so as not
to jolt or rotate them, as cases of move-
ment-induced mortality are well document-
ed (35,36). Eggs that were not turgid or
that lacked the white patch were removed,
and the remaining eggs were consolidated
into the minimum number of containers in
preparation for allocation to experiments.

DDE background levels. Fifteen eggs
from the four clutches (Table 2) were used
for determination of background levels of
DDE. They were incubated at 27.5°C until
stage 21 [day 15 of incubation (34,37)] and
then dissected. Stage of the embryo was
determined by comparison with a standard
series (34). Albumin, clear fluids, yolk, and
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embryo were separated from shell and shell
membranes and stored frozen.

DDE concentrations in albumin, fluids,
yolk, and embryo were determined using
methods modified from those recommend-
ed for chicken eggs (38). The samples were
homogenized and duplicate subsamples of
approximately 5 g were weighed and placed
in glass Kimax tubes (Kimble Kontes,
Vineland, NJ). Acetonitrile (nanograde, 25
ml; Mallinckrodt, Phillipsburg, NJ) was
added and the sealed tubes were shaken
manually for 2 min and centrifuged at
2,500 rpm for 5 min. Supernatant (25 ml)
containing any DDE was decanted and
diluted to 100 ml with distilled deionized
water. This aqueous acetonitrile solution
(50 ml) was purified using tandem C18
(Alltech Associates, Inc., Deerfield, IL) and
Florisil SPE columns (Alltech Associates,
Inc.). The columns were eluted with 100%
ethyl acetate (omnisolv; EM Science,
Gibbstown, NJ) and 100% hexane
(nanograde; Mallinckrodt) at a flow rate of
1 ml/min. The collected eluate, evaporated
to 2 ml (using a warm bath and a stream of
high purity nitrogen), was analyzed for
DDE using a gas chromatograph fitted with
an electron capture detector (HP-5890
Series II GC fitted with HP-1 and BP-10
capillary columns, HP7673 auto-injector;
Hewlett-Packard Corporation, North Ryde,
Australia). Matching duplicate determina-
tions for each sample were averaged to
obtain estimates of DDE in the egg tissues.
Recoveries of DDE from spiked samples
were high (98 ± 23% for whole egg and
101 ± 6% for embryo).
DDE exposure. Eggs were dosed at the

beginning of the sexual determination peri-
od [stage 21 (34)] with 2,2-bis (4-
chlorophenyl)-1,l dichloroethylene (p,p'-
DDE; purity 99%; Aldrich Chemical Co.,
Milwaukee, WI) dissolved in ethanol
(Table 3). A stock solution of 0.8 g DDE
in 300 ml 95% ethanol was used to prepare
dilutions of 0.67, 1.33, 2.00, and 2.66
pg/pl, which were applied to eggs in 5, 10,

and 25 pl aliquots. There were two levels of
control: eggs that were not dosed at all and
eggs that were dosed with one of each of
the three quantities of ethanol only (Table
3), as there are no studies on the effects of
ethanol on Chelonia mydas embryos.
Approximately 20 eggs were used per
experimental regime. DDE solution was
pipetted directly onto the eggshell [topical
application (7)] immediately overlying the
embryo. This was preferred to DDE injec-
tion into the egg and avoided unacceptable
mortality arising from penetration of the
eggshell during injection (7).

A subsample of 12 eggs, 2/dose, was
selected to assess the degree of penetration
of DDE across a range of DDE concentra-
tions and quantities of ethanol (Table 3),
while the remaining eggs were incubated as
part of the DDE effects on hatchlings
experiment.
DDE rates of uptake. The eggs were

incubated at 27.6°C until Stage 28 [49 days
(34,37)], which is at the end of the ther-
mosensitive period for Chelonia mydas.
DDE concentrations were determined as
described above, separately for the embryo
and the remaining contents (minus shell
and membranes), and corrected for back-
ground DDE levels. Rates of uptake follow-
ing the topical application of DDE were
used to estimate DDE dose in the sex deter-
mination experiments described below.
DDE effects on hatchlings. Eggs were

dosed with DDE according to the experi-
mental regime described above. Eggs at
stage 21 (34) were placed in two incubators
set at 30.5°C and two incubators set at
27.5°C. Hence, there were 8-12 eggs per
experimental regime per incubating temper-
ature. In the absence of contamination, the
eggs incubated at the higher temperature
would be expected to produce approximate-
ly 100% female hatchlings and the eggs
incubated at lower temperature would be
expected to yield approximately 100%
males (37,39). Any observed shift of sex
ratio in dosed eggs would therefore be

explained by the effects of DDE, ethanol,
or both on developing embryos between
dosing time (stage 21) and the end of the
sex determination period [stage 27 (34,37)].

Sixteen eggs were placed in each 5-liter
circular plastic food container and covered
by moist vermiculite (three parts vermiculite
to four parts water by weight). Eggs were
allocated to ensure that eggs from each of
the 16 treatments, including controls, and
eggs from each of the four clutches were rep-
resented in each container. The containers
were fitted with lids that allowed gas
exchange while minimizing water loss and
placed in four incubators until hatching.
Water trays were placed in the bottom of
each incubator to maintain a high but
unmeasured humidity in the incubation
chamber. Container weights were moni-
tored during incubation, but replenishment
of water was not necessary. Actual tempera-
tures in the incubators, monitored using
mercury thermometers placed in close prox-
imity to the eggs and calibrated against a
certified National Association of Testing
Authorities of Australia thermometer, were
30.4 ± 0.60C and 27.6 ± 0.40C, respectively.

Hatchlings were removed from the
treatments at Stage 28 (34,37), killed by
intracranial injection of sodium pentabarbi-
tone, labeled, and stored in 10% formalin.
They were weighed to the nearest 0.01 g,
and head width and straight carapace length
were measured to the nearest 0.1 mm.

Table 2. Details of four turtles and their clutches
and the concentrations of DDE measured in a
sample of eggs from each clutch

DDE
concentration

Turtle tag no. Clutch no. Clutch size (ng/g)
G2-T12791 A 156 2.0 ± 0.3 (n= 5)
G1-T82886 B 88 1.5 ± 0.0 (n= 5)
G4-T6287 C 73 1.7 (n = 1)
G3-T81574 D 139 1.5 ±0.1 (n=4)
DDE concentrations are mean ± one standard deviation.
Because only one egg was used from clutch C, no stan-
dard deviation can be reported.

Table 1. Range of values of DDE measured in eggs of reptiles with temperature-dependent sex determina-
tion compared to values obtained in the present study for dosed eggs and undosed eggs collected from
Heron Island, Queensland, Australia

Species name DDE (ng/g wet wt) Locality Reference
Alligator mississippiensis 890-29,000 Lake Apopka, Florida (32)
Crocodylus acutus 370-2,900 Everglades National Park, Florida (31)
Chelydra s. serpentina 877 ± 4818 Cootes Paradise, Lake Ontario (28)
Chelonia mydas Up to 543 Lab dosing, University of Canberra Present study
Chelydra s. serpentina 150-430 Hamilton Harbour, Lake Ontario (16)
Caretta caretta 56-150 Merritt Island, Florida (14)
Chelonia mydas ND-9 Ascension Island (33)
Chelonia mydas ND-5 Merritt Island, Florida (13)
Chelonia mydas 1.3-2.4 Heron Island, Queensland, Australia Present study
ND, level not detectable.
aMean ± standard deviation.

Table 3. Quantities of DDE administered to eggs of
Chelonia mydas in solutions of 5, 10, and 25 p1
absolute ethanol (EtOH).

DDE (pg)/5 pi DDE (pg)/10pl DDE (pg)/25 pi
EtOH EtOH EtOH
0 0 0
3.3 6.78 16.6
6.7a 13.3a 33.3a
10.0 20.0 49.8
13.3a 26.6 66.5a
One set of control eggs received neither ethanol nor DDE,
and there were 12 DDE treatments and three ethanol-only
controls.
"Treatments chosen for analysis of the penetration rates of DDE;
two eggs per dose were treated at stage 21 ± 0.4 and DOE was
extracted at stage 28 ± 0.5.
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Hatchling success and any hatchling defor-
mities were recorded. The right gonad, kid-
ney complex, and associated ducts of each
hatchling were removed, embedded in wax,
sectioned, and stained with hematoxylin
and eosin. The sex of each gonad was
assessed by examination under a light
microscope according to criteria established
by Miller and Limpus (37). Where an
assessment was not possible, the second
gonad was examined.

Results
DDE background levels. Untreated eggs had
between 1.3 ng/g and 2.4 ng/g DDE (Table
2) (mean ± standard error, 1.7 ± 0.3, n = 15).
There was a significant added variance com-
ponent due to differences among clutches in
DDE concentrations (F= 5.96; df= 3,11;
p<0.05). Eggs in dutch A had significantly
higher concentrations of DDE (2.0 ng/g)
than eggs in clutch B (1.5 ng/g) or D (1.5
ng/g) (Tukey Multiple Comparison Test;
p<0.05) (Table 2). There were no significant
differences between clutches A and C (1.7
ng/g), or B, D, and C (Table 2).
DDE rates of uptake. The amount of

DDE taken up by the whole egg contents
(exduding shell and shell membranes) and
the embryo alone was regressed against the
amount ofDDE applied and the volume of
ethanol used to apply the DDE. Once the
amount of DDE applied was included in
the model, no further variation in DDE
taken up could be explained by the volume
of ethanol used. DDE uptake could be pre-
dicted from DDE applied using the follow-
ing equations:

DDEuptake by the whole egg
=0.3387 x DDEapplied 0.2339 (1)
25

* Embryo 1 ill _
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Figure 1. Relationship between the amount of ODE
applied and the amount that penetrated the egg.
The whole egg does not include shell and shell
membranes. Typical standard deviations were 1.9
pg for whole eggs and 1.1 pg for embryos.

DDEuptake by the embryo
= 0.0757 x DDEappIid- 0.0545

where DDE is in micrograms and DDE &p,gd
ranged from 6.7 pg to 66.5 pg (Fig. 1). The
slopes of both relationships were significant
(Equation 1: F= 206.6; df= 1,2; p<0.01; M
= 0.99; and Equation 2: F= 179.7; df= 1,2;
p<O.01; R2 = 0.99), but the intercepts were
not. Hence, about one-third of DDE applied
penetrated the eggs (Fig. 1), and about 8% of
DDE applied was absorbed by the embryo
(Fig. 1); therefore, levels up to 543 ng/g
DDE were predicted in eggs exposed to up to
66.5 pg DDE dissolved in 25 pl of ethanol.
DDE effects on hatchlings. Stepwise

multiple logistic regression of hatchling sex
against the predicted amount ofDDE taken
up by the whole egg, the amount of ethanol
applied, and incubation temperature indi-
cated that temperature alone exerted an
influence on offspring sex (X2 = 204.0; df=
1; p<0.0005). The probability of an egg
yielding a female hatchling at 27.6°C was
9%, compared to 94% at 30.4°C. Predicted
outcomes of sexual differentiation were con-
sistent, with expectation based on the effect
of temperature alone (males at low tempera-
tures and females at high temperatures).
Hence, we could not demonstrate that
either DDE or ethanol affected hatchling
sex at either temperature.

Multiple logistic regression was also
used to explore any relationships between
embryo survival and the amount of DDE
taken up by the whole egg, the amount of
ethanol applied, and incubation tempera-
ture. Only incubation temperature was
found to have a significant effect on embryo
survival (x2 = 21.7; df= 1; p<0.0005). The
probability of an egg hatching at 27.60C
was 94% compared to 72% at 30.4°C.

The incubation time to pipping, defor-
mity rate, and hatchling size and weight were
regressed against predicted total DDE in the
egg and volume of ethanol applied for each
temperature. Duration of incubation, hatch-
ling weight, head width, or carapace length
were not significantly related to the amount
of DDE or ethanol applied. However, eggs
incubated at the lower temperature of
27.60C took longer to develop (62.6 vs. 52.3
days; F= 2,437.2; df=1,283; p< 0.0005) and
yielded hatchlings that were heavier (25.0 vs.
24.2 g; F= 17.0; df= 1,272; p<0.0005) and
had significantly wider heads (12.5 vs. 12.3
mm; F = 7.99; df= 1,282; p<0.01) than
hatchlings that emerged from the 30.40C
incubation. Carapace length was unaffected
by all treatments (46.2 mm).

One female hatchling incubated at
30.40C and exposed to 42.8 ng/g DDE in
the egg (predicted by Equation 1) showed a

saddleback condition of extreme celosomia
(body deformity) (34). No other cases of
body deformities were observed.

Discussion
DDE concentrations in Chelonia mydas eggs
collected from Heron Island were much
lower than the levels reported in other stud-
ies, i.e., in the eggs from Florida beaches in
1976 [up to about four times lower (13)]
and from the Ascension Islands in 1972 [up
to about 7 times lower (33)] (Table 1). Some
DDE in C mydas eggs from Heron Island
was expected because of the global contami-
nation of oceans with DDT (23,24).
Concentrations of DDE are even higher in
other reptile species with temperature-depen-
dent sex determination from other areas
(Table 1). The foraging grounds of the four
turtles whose eggs were collected on Heron
Island must therefore be relatively unconta-
minated by DDE. Differences in DDE con-
centration between clutches were statistically
significant but small (e.g., 2 vs. 1.5 ng/g;
Table 2). These differences probably reflect
variances in the background levels of DDE
in the foraging area of the female turtles (23),
differences in time since last nesting (4Q), or
natural variation in DDE uptake and reten-
tion time (41) of each individual.

Topical administration ofDDE dissolved
in ethanol was found to be an effective
method of contaminating eggs in the labora-
tory because the relationship between the
concentration and amount applied and the
amount taken up by the egg and embryo was
statistically significant and suitable for predic-
tion (Fig. 1). However, only 34% of the ini-
tial dose found its way into the egg, and only
about 8% of applied DDE found its way into
the stage 28 embryo (34) (Fig. 1). The
remainder presumably remains on the surface
and within the pores of the eggshell and shell
membranes or is lost by volatilization.
Guillette (29) reported an uptake of up to
62% when Alligator mississippiensis eggs were
dosed with estradiol in oil. It is likely that the
penetration of solutes varies from species to
species depending on the eggshell structure
(42,43) and on the solvents used.
Nevertheless, there is a limit to the amount of
ethanol that can be applied to an egg before
risking its survival (thought to be about 25
pl); because about one-third passes into the
egg of Chelonia mydas and only 8% is taken
up by the embryo, there is a limit to the
amount ofDDE that can be administered to
the developing embryo by topical administra-
tion using ethanol.

Within these limitations, we could
demonstrate no effects of contamination on
incubation time to pipping, hatching success,
sexual differentiation, or hatchling deformi-
ties. While hatching success decreased and
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hatchling mortality and incidence of body
deformities increased in A. mississippiensis eggs
exposed to up to 10 pg/g DDE (29), this was
not observed for C mydas exposed to an 18-
times lower dose (543 ng/g DDE).

Hatchling size and weight of C. mydas
varied only with temperature. Normal hatch-
ling size and weight were also observed with
A. mississippiensis (29). It appears that the con-
centrations of DDE applied to the eggs of C
mydas in the present study (up to 543 ng/g of
whole egg administered in up to 25 pl of
ethanol) were not sufficient to disrupt cellular
processes governing embryonic growth, devel-
opment, and sexual differentiation. We con-
clude that embryos of C mydas, and possibly
those of other species with environmental sex
determination, will not be impacted in the
wild by levels of DDE contamination in the
eggs similar to or less than those measured in
the dosed eggs of the present study (Table 1).
This is in contrast to other studies, which have
reported reduced hatchling success, increased
deformities, and modified development when
reptiles are exposed to DDT and its metabo-
lites (12,28). However, the range ofDDE lev-
els that trigger these responses in embryos is
still unknown. The use of less volatile solvents
with greater DDE solubility coefficient, hence
allowing increased levels of DDE to be
applied, should be considered in future stud-
ies. The problem of low applicable DDE that
generates no physiological effects in the pre-
sent study could possibly be overcome by
using a less degenerative solvent in greater
quantities and the exposure of embryos to
DDE at an earlier stage.

The exceptionally low levels of DDE in
control eggs from Heron Island and the fail-
ure to demonstrate any effects of DDE con-
tamination up to 543 ng/g of whole egg
suggests that the populations of green turtles
feeding in the same area as the four turtles
whose eggs were collected on Heron Island
are currently secure from the effects ofDDE
contamination. The same may be true for a
number of populations of this and other
reptile species that are subjected to moderate
levels of contamination (Table 1). However,
the possible synergistic effects between DDE
and other endocrine-disrupting contami-
nants (44-46) on sex differentiation, a pos-
sible continuous exposure to a surrounding
media contaminated with DDE during the
incubation period, and transgenerational
effects need to be considered.
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